Year 7 Assessment Sequences 1

Name:

Answers

Draw the next term in the sequence. 0000

How many circles will make up the $7^{\text {th }}$ term?

$$
2 n+2=2(7)+2=16
$$

$$
16
$$

2.

Find the next two terms in each of the linear sequences.
$65,53,41,29,17$
$12,4,-4,-12,-20$
2.25, 3.45, 4.65, \qquad $5.85,7.05$

3

\section*{| \square | |
| :--- | :--- | :--- |}

Пा||IIT 5

How many grey squares would there be in the $4^{\text {th }}$ term of this sequence?

How many white squares would there be in the $19^{\text {th }}$ term of the sequence?

$$
2 n+1=2(19)+1=39 \quad 39
$$

4 Tick all the sequences that are linear.
$2,8,32,128,512$

6.7, 6.3, 5.9, 5.5, 5.1
\square

5 Create two different linear sequences that both start with the number 90

There are an infinite number of

6 Find the next two terms in these geometric sequences.

$$
6000,600,60,-6,0.6
$$

(7) This pattern repeats every four terms as shown.

What will be the $16^{\text {th }}$ term in the pattern?
\qquad
What will be the $3 I^{\text {st }}$ term in the pattern?
Red heart
(8) Complete the table to represent the sequence.

Term	1	2	3	4
Number of matches	5	7	9	11

Would the points of the graph of this sequence lie on a straight line? Explain your answer.

Yes they would because the sequent increases by the same amount each ${ }_{1 \text { mark }}$ time so it is linear.

10 Find the next two terms in this sequence.

11
These numbers make up two linear sequences.
\square
2
3
4
6
7
8
What are the two linear sequences?

Year 7 Assessment Sequences 2

Total Score 120

Name:
Answers
(1) Here are the first three terms in a sequence.

Draw the next term in the sequence.

How many triangles will make up the $5^{\text {th }}$ term?
Adding 3 each time...
2

Find the next two terms in each of the linear sequences.
$95,87,79,71,63(-8)$
$-12,2,16,30,44(+14)$
$8.99,10,11.01,12.02,13.03,(+1.01)$

3

How many grey squares would there be in the $4^{\text {th }}$ term of this sequence?

How many white squares would there be in the $19^{\text {th }}$ term of the sequence?

$$
2 n-2=2(19)-2=36
$$

4. Tick the sequence that is linear.

$$
\begin{aligned}
1,8,27,64,125 & \square \\
-2,2, \quad-2, \quad 2, \quad-2 & \square \\
x+2, & x+6,
\end{aligned}
$$

5 Create two different linear sequences that both start with the number 25

There are infinite possibilities. As long as they go up or down by the same amount each time, then they are linear and correct.

6 Find the next two terms in these geometric sequences.
$5,10,20$, \qquad
9000, 900, 90, \qquad , 0.9

This pattern repeats every four terms as shown.

What will be the $20^{\text {th }}$ term in the pattern?
Purple diver

What will be the $41^{\text {st }}$ term in the pattern?
Red hiker

No. This is a geometric as opposed to arithmetic linear sequence.

8 Complete the table to represent the sequence.
00
00
00

\bigcirc

Term	1	2	3	4
Number of circles	8	4	2	1

Would the points of the graph of this sequence lie on a straight line? Explain your answer.

9
Find the missing terms in these linear sequences $15,12 \quad, 9 \quad \frac{15-9}{2}=3 \quad 15-3=12$
\qquad

$$
7
$$,

15, \qquad
\qquad 11 , 9

$$
\frac{15-9}{3}=2
$$

10
Find the next two terms in this sequence.

These numbers make up two linear sequences.

What are the two linear sequences?
$2^{\text {nd }}+2,4,10,16$

Year 7 Assessment Sequences 3

Name: \qquad
(1) Here are the first three terms in a sequence.

Draw the next term in the sequence.

17
How many squares will make up the $5^{\text {th }}$ term? $4 n+1$
2. Find the next two terms in each of the linear sequences.
$3,8,13,18,23(+5)$
(-800)
$8000,7200,6400,5600,4800$
6.27, 7.48, \qquad $(+1.21)$
\square

Total Score 120

How many grey squares would there be in the $5^{\text {th }}$ term of this sequence?

How many white squares would there be in the $8^{\text {th }}$ term of the sequence?

4.

Tick the sequence that is linear.

$$
-3,8,5,13,18
$$

$-1,2, \quad-3,4, \quad-5$

$2 k+2, \quad 2 k+6 . \quad 2 k+10,2 k+14$

5 Create two different linear sequences that both start with the number 25
$25, \frac{24}{25,}, \frac{23}{26}, \frac{22}{28}, 28$

Infinite number or correct answers.
 Needs to change by the Same amount each tine.

6 Find the next two terms in these geometric sequences.

$$
\begin{aligned}
& 5,10,20, \frac{40,}{80} \\
& 9000,900,90,-9,0.9
\end{aligned}
$$

(7) This pattern repeats every five terms as shown.

$$
\uparrow \nrightarrow \downarrow \downarrow \downarrow \downarrow \downarrow
$$

What will be the $25^{\text {th }}$ term in the pattern?

What will be the $21^{\text {st }}$ term in the pattern?

(8)

Complete the table to represent the sequence.

Term	1	2	3	4
Number of circles	3	7	12	18
$O O O O$ $O O O O O$ $O O O$ $O O O O$				

Would the points of the graph of this sequence lie on a straight line? Explain your answer.

No because the difference between terms $\frac{\square}{1 \text { mark }}$ keeps increasing by one.
(9) Find the missing terms in these linear sequences.

15, \qquad , 9
\qquad , 15 \qquad , 9

10 Find the next two terms in this sequence.

$$
\underbrace{2_{+3}^{4}, ~ 7, ~}_{+2} \underbrace{11,}_{+4} \underbrace{16}_{+5} \underset{+6}{ }, \frac{22}{2}
$$

(11) These numbers make up two linear sequences.
\square
2
3
4
6
6
8
9
What are the two linear sequences?

